Urology Annals
About UA | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionLogin 
Urology Annals
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 911   Home Print this page  Email this page Small font size Default font size Increase font size


 
Table of Contents
REVIEW ARTICLE
Year : 2013  |  Volume : 5  |  Issue : 2  |  Page : 61-74  

Antibiotic prophylaxis for transurethral urological surgeries: Systematic review


1 Department of Urology, The Sydney Children's Hospitals Network: Westmead Campus, Sydney, Australia; Department of Surgery, The Urology Section, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia; Conjoint Associate Lecturer, University of New South Wales, School of Women's and Children's Health, Sydney, Australia
2 Department of Urology, The Sydney Children's Hospitals Network: Westmead Campus; Associate Lecturer, University of Sydney, Sydney, Australia

Date of Submission29-Mar-2012
Date of Acceptance10-Jul-2012
Date of Web Publication3-Apr-2013

Correspondence Address:
Basim S Alsaywid
Department of Surgery, Urology Section, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah 21423, Saudi Arabia

Login to access the Email id


DOI: 10.4103/0974-7796.109993

PMID: 23798859

Rights and Permissions
   Abstract 

The use of antibiotic prophylaxis to prevent urinary tract infection and bacteremia (sepsis) following endoscopic urologic procedures is a controversial topic. Evidence in the literature revealed that urological instrumentation is associated with increased incidence of urinary tract infection and bacteremia. The aim of this review is to evaluate the effectiveness of antibiotic prophylaxis in reducing the risk of urinary tract infection in patients who had transurethral urological surgeries. We have selected all RCTs of adult population who underwent all different types of transurethral urological surgery, including cystoscopy, transurethral resection of prostate and transurethral resection of bladder tumor, and received prophylactic antibiotics or placebo/no treatment. At first, more than 3000 references were identified and reviewed; of which 42 studies with a total of 7496 patients were included in the final analysis. All those trials were analyzing antibiotic prophylaxis versus placebo/no treatment, and they were significantly favoring antibiotic use in reducing all outcomes, including bacteriuria (RR 0.36, 95% CI 0.29 to 0.46, P < 0.0001) with moderate heterogeneity detected (I 2 48%), symptomatic UTI (RR 0.38, 95% CI 0.28 to 0.51, P < 0.0001) with no significant heterogeneity was detected (I 2 = 17%), bacteremia (RR 0.43, 95% CI 0.23 to 0.82, P < 0.0001) with no noted heterogeneity (I 2 = 0%), and fever ≥38.5 Celsius (RR 0.41, 95% CI 0.23 to 0.73, P = 0.003); also, there was no noted heterogeneity (I 2 = 0%). However, using antibiotic prophylaxis did not reduce the incidence of low grade temperature (RR 0.82, 95% CI 0.61 to 1.11, P = 0.20) or in moderate grade temperature (RR 1.03, 95% CI 0.71 to 1.48, P = 0.89). Antibiotic prophylaxis appears to be an effective intervention in preventing urinary tract infections and its sequels following transurethral urological surgeries in patients with preoperative sterile urine.

Keywords: Antibiotic prophylaxis, urinary tract infection, endourology, bacteremia


How to cite this article:
Alsaywid BS, Smith GH. Antibiotic prophylaxis for transurethral urological surgeries: Systematic review. Urol Ann 2013;5:61-74

How to cite this URL:
Alsaywid BS, Smith GH. Antibiotic prophylaxis for transurethral urological surgeries: Systematic review. Urol Ann [serial online] 2013 [cited 2020 Aug 8];5:61-74. Available from: http://www.urologyannals.com/text.asp?2013/5/2/61/109993


   Introduction Top


The trend in all surgical disciplines has been shifting toward non-operative or minimally invasive treatment, which has multiple applications with varied outcomes comparable to open surgery. The goal is to decrease the morbidity of surgical procedures, minimize hospital stays, better cosmesis, and improve patients' quality of life. Endourology, which began with the development of cystoscopy, initially defined as "the closed and controlled manipulation within the urinary tract," is one of the most challenging and rapidly evolving areas in urology practice. The goal of endoscopy is to access and treat organs, through natural or artificial orifices in the body, with a telescope. The gradual evolution toward the modern endoscopes started with Philipp Bozzinis construction of the lichtleiter in 1806 for direct inspection and treatment of the uterus and bladder. [1] Since then, significant development and advancements have been made in the field of endo-urology. With continued refinements, a wide range of rigid, semi-rigid, and flexible endoscopes made available, and at the present time, they made up the bulk of our urologic surgical practice.

The risk of urinary tract infection following endoscopic urologic procedures and the use of antibiotic prophylaxis are highly controversial topics. Traditionally, endo-urological surgeries were considered clean contaminated procedures and did not require antibiotic coverage. [2] However, evidence in the literature revealed that urological instrumentation is associated with increased incidence of urinary tract infection and bacteremia. [3] Potential sources of bacteria leading to infection include the prostatic adenoma, urethral flora, bladder colonization, or perioperative contamination. [4] Urinary catheters represent an essential part of our medical care as an investigative and management tool. Catheter-related UTIs account for roughly 40% of all nosocomial infections that increase the mean hospital stay, morbidity, and cost. [5] In a sterile urine preoperatively, the incidence of symptomatic UTI following cystoscopy is 5%, and the incidence of asymptomatic bacteriuria has been reported ranging between 10% and 35% in most of the series. [6],[7],[8] Following ureteroscopy, the reported incidence of UTI ranges between 3.9% and 25%. [9],[10],[11]

Sepsis following UTI (urosepsis) is a syndrome resulting from complicated UTI in a patient with one or more of the following signs: Tachypnea, tachycardia, hyperthermia or hypothermia, or evidence of inadequate end-organ perfusion. Septic shock, defined as sepsis syndrome that is accompanied by hypotension, is a rare event after urological procedures with a favorable prognosis. [12] The reported rates of urosepsis following the transurethral resection of prostate (TURP) range from 1% to 4%, with an associated mortality rate of 13%, which raises up to 20% in men over 64 years old. [13],[14],[15] Compared to TURP, Fewer data are available on the infectious complications of transurethral resection of bladder tumor (TURBT). However, it has been documented before that the infection rates following TURBT range from 18% to 75%, which was correlated to patient gender and the preoperative urine culture results. [12]

Administration of antibiotic prophylaxis in high risk cases is accepted and even recommended practice, but their use in low risk population remains controversial, and question persist, particularly on the appropriate class and duration of treatment. [16],[17] After an earlier critical review of 75 studies, [18] which did not recommend the use of antibiotic prophylaxis due to methodology and design flaws, later studies supported the routine use of perioperative antibiotics for low risk patients undergoing all different types of endo-urological procedures with variable degrees of certainty. [16],[19],[20],[21],[22],[23],[24],[25],[26]


   Objectives Top


The aim of this review is to assess the effectiveness of antibiotic prophylaxis given at the perioperative period, in comparison to placebo/no treatment, in reducing the incidence of urinary tract infections following transurethral urological surgeries in adult patients.


   Materials and Methods Top


Criteria for considering studies for this review

Types of studies

All randomized, controlled trials (RCT) and quasi-RCTs, (RCTs in which allocation to treatment was obtained in predictable methods or uncertain) looking at adult patients who had transurethral urological surgery and received antibiotic prophylaxis versus placebo/no treatment during the perioperative period. The first period of randomized crossover studies shall also be included. All studies, which have been included in previous meta-analyses and which comply with our inclusion criteria, were included.

Type of participants

Inclusion criteria

Patients with sterile preoperative urine, who had an elective transurethral urological surgeries, which includes: Cystoscopy, transurethral resection of prostate (TURP), transurethral resection of bladder tumor (TURBT), optical urethrotomy (VIU), urethral dilation, and bladder neck incision (BNI), were included.

Exclusion criteria

All patients with culture-proven UTIs prior to intervention, patients with neurogenic bladder, patients with indwelling catheters, and patients who have received antibiotics during the preceding 10 days were excluded. Also, patients with co-morbid conditions such as diabetes, renal failure (serum creatinine levels higher than 2 mg/dl), and immunocompromised individuals who are prone to infections were excluded. Studies evaluated two active arms with no control group were also excluded. Studies assessed the risk of infection after one week from surgery was excluded, unless data are available for the first week. And finally, patients with prostheses (e.g., hip replacement, knee replacement, and prosthetic cardiac valves) and congenital heart disease requiring prophylactic antibiotics were also excluded.

Subgroups

Transurethral urological surgeries broadly were divided into two main groups: Urological procedure without mucosa penetration, like cystoscopies which carries a lower risk of infection, or urological procedure with mucosa penetration, like TURP, TURBT, BNI, and VIU which carries a slightly higher risk of infection. Therefore, subgroup analysis was performed for those two groups, and a third group was created if the study included all different type of urological procedure, and they did not report the results separately. Another subgroup analysis was performed for the different grades of fever.

Types of interventions

Use of any antibacterial agents, alone or in combination, single dose or multiple doses, for one day or several days versus placebo or no treatment.

Type of outcome measures

Primary outcomes

  • Asymptomatic bacteriuria: Defined as the presence of bacteria in the urine in a patient who has no symptoms or signs. Bacteriuria defined as a single bacterial growth of 10^5 colony forming units per ml in urine culture on a clean catch urine or >10^3 per ml on an in-out catheter specimen or suprapubic puncture specimen and between postoperative days 2 and 10.
  • Symptomatic UTI: Defined as bacteriuria (as defined above) in patient with symptoms including pain (flank, lower abdominal), lower urinary tract symptoms (dysurea, frequency, urgency, or incontinence), hematuria, or fever.
Secondary outcomes

  • Bacteremia: Defined as the presence of bacteria in blood culture irrespective of clinical signs.
  • Fever: Which was graded into the following
    1. Low grade fever: Any temperature ≥37.3 Celsius and less than 38 Celsius.
    2. Moderate grade fever: Any temperature ≥38 Celsius and less than 38.5 Celsius.
    3. High grade fever: Any temperature ≥38.5 Celsius.
Search methods for identification of studies

Electronic searches

A comprehensive and exhaustive search strategy was formulated in an attempt to identify all relevant studies regardless of language or publication status, initially. All relevant studies were obtained from the following electronic databases:

  • MEDLINE from 1966 to 21 st April 2011
  • EMBASE from 1980 to 31 st Dec 2010
  • LILACS from 1980 to 2010
  • Cochrane Central Register of Controlled Trials (CENTRAL).
  • Reference lists of relevant articles, reviews, studies, and book chapters.
  • All major urological conference proceedings were searched accordingly: American Urological Association (AUA) meetings from 1996 up to May 2011, European Urology Association meeting from 2004 and up to date, and Canadian Urology Association meetings from 2006 up to date.
Along with MeSH terms and relevant keywords, I used the Cochrane Highly Sensitive Search Strategy for identifying reports of randomized controlled trials in MEDLINE. [27] See [Appendix 1] [Additional file 1] for examples of the search strategies across different databases.

Limits

The initial search strategy was performed without limits to language, and after reviewing the titles and then the abstracts of the search results, 10 trials could possibly be included but were not, due to language barrier, 4 in French, 4 in Spanish, and 2 in Italian languages.

Data collection and analysis

The methodology for data collection and analysis was based on the guidance of Cochrane Handbook of Systematic Reviews of Intervention. [27] Abstracts of all trials identified by electronic or bibliographic search were examined by two authors. When necessary, the full text was obtained to determine the eligibility of studies for inclusion.

Selection of studies

All potential trials' titles and abstracts were read by two reviewers and were selected for eligibility according to the criteria specified in the protocol. Where suitability was uncertain or no abstract available, the full article was obtained. The articles were excluded if it did not fit the inclusion criteria; the reasons for exclusion were detailed in the section [Appendix 2]: [Additional file 2] Characteristics of Excluded Studies.

Data extraction and management

For each included article, an attentive reading followed by data extraction using a standardized data extraction form. Extracted information included: Study details, participants details, intervention details, and outcome details.

Assessment of risk of bias in included studies

The Methodological quality of each selected trial was assessed comprehensively. We used the Cochrane Collaboration tool for assessing the risk of bias for each individual study and presented results in a summery [Table 1]. To assess the possibility of publication bias, a funnel-plot test was performed. Attempts were made to minimize the potential for publication bias by performing a very sensitive, broad, and comprehensive search strategy.
Table 1: Risk of bias graph: Author's judgment about each risk of bias item presented as percentages across all included studies

Click here to view


Measures of treatment effect

For dichotomous outcomes, which include bacteriuria, symptomatic urinary tract infection, bacteremia, and fever, results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Data were pooled using the fixed-effects model. The meta-analysis was performed using the Review Manager 5 package. In case it was not possible to perform a meta-analysis of the data, the results were presented in a descriptive form.

Assessment of heterogeneity

Heterogeneity was analyzed, initially by eye-balling and then, by using the X 2 statistic with a significant level of 0.10, and the I 2 test. When there was considerable heterogeneity among the studies (I 2 > 50%), the random-effects model was utilized. If considerable heterogeneity was still detected (I 2 > 50%), a possible explanation was pursued, and sensitivity analysis was performed. If heterogeneity persisted and a reasonable cause was found, a separate analysis was performed. If the cause was not apparent and heterogeneity was caused by divergent data in terms of direction of results, I did not pool the data. The studies were included in a meta-analysis using the outcomes presented above.


   Results Top


Results of the search

Search was conducted on 21 st April 2011, and produced 2291 titles after 726 duplicates were removed [Figure 1]. After initial screening of titles, 844 abstract were reviewed by two authors. A further irrelevant 671 references were excluded at that stage. Full articles were obtained for 173 references; however, 10 references were discarded due to language barrier despite its relevance to the topic (review the excluded trials), and a further 89 references were discarded because it was either irrelevant reports or reviews articles. The remaining of the studies were reviewed initially for fulfilling my inclusion and exclusion criteria, and then for its relevance, based on study design, type of participants, exposures, and outcomes measures. Finally, 42 original reports of trials were identified as meeting inclusion criteria for data extraction and were included in the final meta-analysis. [3],[14],[28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46],[47],[48],[49],[50],[51],[52],[53],[54],[55],[56],[57],[58],[59],[60],[61],[62],[63],[64],[65],[66],[67]
Figure 1: Flow-chart of screening process

Click here to view


Risk of bias in included trials

Adequate randomization was identified in 15 trials (36%), and 12 trials reported an adequate allocation concealment (29%). Thirteen trials were double-blinded, and a further 5 trials reported an adequate blinding process. Most of the included trials, 34 trials which represent 81% of all included trials, addressed an incomplete outcome data. Selective reporting section was very confusing where 27 trials (64%) were unclear and 14 trials were adequate. The majority of included trials were apparently free of other potential source of bias. Most, if not all, of the trials included did not mention that they performed intention to treat analysis. Additionally, most of the time, the methodology section of the included trials were insufficiently detailed and underreported. Publication bias was unlikely according to the funnel plots inspection [Figure 2].
Figure 2: Funnel plots for included trials

Click here to view


Effects of intervention

Summary of findings for the main comparison: Antibiotic prophylaxis versus placebo/no treatment, outcome: 1.1 Bacteriuria, 1.2, Bacteriuria according to the urological procedure performed, and 1.3 Bacteriuria according Antibiotic course (single dose, ≤3 days course, or >3 days course) are illustrated on [Figure 3], [Figure 4] and [Figure 5], respectively. Summary of findings for outcome: 2 Symptomatic urinary tract infection, outcome: 3 Bacteremia and outcome: 4 Fever, divided according to temperature grades, are illustrated in [Figure 6], [Figure 7] and [Figure 8], respectively.
Figure 3: Forest plot of comparison: Antibiotic prophylaxis versus placebo/no treatment, outcome: 1.1 bacteriuria

Click here to view
Figure 4: Forest plot of comparison: Antibiotic prophylaxis versus control/placebo, outcome: 1.2 bacteriuria according to the urological procedure performed

Click here to view
Figure 5: Forest plot of comparison: Antibiotic prophylaxis versus control/placebo, outcome: 1.3 bacteriuria according antibiotic course (single dose, ≤3 days course, or >3 days course)

Click here to view
Figure 6: Forest plot of comparison: Antibiotic prophylaxis versus control/placebo, outcome: 2 symptomatic urinary tract infection

Click here to view
Figure 7: Forest plot comparison: Antibiotic prophylaxis versus control/placebo, outcome: 3 bacteremia

Click here to view
Figure 8: Forest plot of comparison: Antibiotic prophylaxis versus control/placebo, outcome: 4 fever, divided according to temperature grades

Click here to view


The analysis included 42 trials with a total of 7496 patients. All studies reported the incidence of bacteriuria within 1 week postoperatively. However, not all trials allowed data extraction for all other end points, especially for bacteremia.

Results of the main outcome number 1: Bacteriuria

Data on bacteriuria could be extracted from all included trials, 42 trials, with 7496 patients. There were 555 events of bacteriuria among 3147 patients randomized to receive placebo or no treatment, and 294 events among 4349 patients randomized to receive antibiotics. The meta-analysis was significant and favored antibiotic use (RR 0.36, 95% CI 0.29 to 0.46, P < 0.0001). A moderate heterogeneity was detected in the analysis (I 2 = 48%) [Figure 3]. This heterogeneity was expected before hand, and the decision to perform subgroup analysis according to the invasiveness of the surgical procedure was preplanned, and the results of this section are shown in [Figure 4]. The results for the minimal invasive surgeries, mainly cystoscopies, were reported in 5 trials, "Cam 2009," "Higgins 1966," "Johnson 2007," "Mendoza 1971," and "Wilson 2005." There were 55 bacteriuria events among 1002 patients randomized to control, and 43 events among 1681 patients randomized to receive antibiotic prophylaxis. The results did not reach to a statistical significance (RR 0.5, 95 CI 0.22-1.15, P < 0.1), which implies that antibiotic prophylaxis may have no role in preventing urinary tract infections in patients undergoing diagnostic cystoscopy. A mild heterogeneity was detected in the analysis (I 2 = 29%). Furthermore, there was a significant reduction of bacteriuria events in endoscopic urologic surgeries with variable degrees of mucosal penetration, [Figure 4]. For combined surgeries, bacteriuria events were significantly reduced in the antibiotic arm (RR 0.15, 95% CI: 0.07-0.32, P < 0.0001), with no heterogeneity detected in the analysis (I 2 = 0%). As well, bacteriuria events were significantly reduced in patient received antibiotic prophylaxis and undergone transurethral surgeries with mucosa perforation (RR 0.38, 95% CI: 0.29-0.49, P < 0.0001). However, the heterogeneity for this subgroup was still significant with an I 2 of 51%. Sensitivity analysis was performed, and after excluding "Stricker 1988," "Qvist 1984," "Ibrahim 2002," and "Conn 1988," the I 2 dropped to insignificant level. Those articles were re-reviewed, and the most significant methodological difference were: Using different courses of antibiotic prophylaxis (single dose, up to 3 days course, or more than 3 days course), and using different classes of antibiotics agents. The first part was only checked in this review, and the results are summarized in [Figure 5] while the second part will be assessed in a different review. This step did not include trials with more than two active arms because they were using two different antibiotic courses on the same control. This analysis was significant and favored antibiotic use (RR 0.38, 95% CI 0.30 to 0.47, P < 0.0001), which was also evidenced across the three different antibiotic courses, and a mild heterogeneity was detected in the analysis (I 2 = 36%).

Results of the main outcome number 2: Symptomatic urinary tract infection

Data on symptomatic UTI could be extracted from 22 trials, with 5211 patients. There were 223 events (10.1%) of symptomatic UTI among 2204 patients randomized to receive placebo or no treatment, and 87 events (3%) among 3007 patients randomized to receive antibiotics. The meta-analysis was significant and favored antibiotic use (RR 0.38, 95% CI 0.28 to 0.51, P < 0.0001). No significant heterogeneity was detected in the analysis (I 2 = 17%), [Figure 6].

Results of the outcome number 3: Bacteremia

Data on bacteremia could be extracted from 8 trials only, with 1044 patients assessed. There were 30 events (6.1%) of bacteremia among 490 patients randomized to receive placebo or no treatment, and 12 events (2.1%) among 554 patients randomized to receive antibiotics. The meta-analysis was significant and favored antibiotic use (RR 0.43, 95% CI 0.23 to 0.82, P < 0.0001). There was no heterogeneity detected in the analysis (I 2 = 0%), [Figure 7].

Results of the outcome number 4: Fever

The incidence of fever following endoscopic urologic intervention was reported in 15 trials, including 1650 patients, and summary of the results are shown in [Figure 8]." Overall, there were 150 events (23%) of fever among 651 patients randomized to receive placebo or no treatment, and 136 events (15%) among 909 patients randomized to receive antibiotics. However, the overall meta-analysis was not quite significant (RR 0.79, 95% CI 0.61 to 1.03, P = 0.08). There was no significant heterogeneity detected in the analysis (I 2 = 32%), especially after performing the subgroup analysis according to the temperature grade, [Figure 8]. The subgroup analysis was performed based on the different levels of temperature's grades as defined in the methodology section. In high grade temperature, ≥38.5 C, 6 trials documented that antibiotic prophylaxis significantly reduced the risk of having a high temperature, with 30 events (11.7%) of high fever among 255 patients randomized to receive placebo or no treatment, and 23 events (4.6%) among 503 patients randomized to receive antibiotics (RR 0.41, 95% CI 0.23 to 0.73, P = 0.003). There was no heterogeneity detected in the analysis (I 2 = 0%). However, in 10 trials, using antibiotic prophylaxis did not reduce the incidence of low grade temperature (29.5% in the antibiotic group versus 38.5% in the control group) (RR 0.82, 95% CI 0.61 to 1.11, P = 0.20) or in moderate grade temperature (26.5% in the antibiotic group versus 25.7% in the control group) (RR 1.03, 95% CI 0.71 to 1.48, P = 0.89).


   Discussion Top


This systematic review evaluated all currently available trials addressing the use of antibiotic prophylaxis in endourological surgeries. It offers a comprehensive assessment supported by high level of evidence, which will help in improving the current practice. This review was designed to answer only one vital question: Do we need to use antibiotic prophylaxis in all endourological surgeries, even the low risk one, like cystoscopy? Apart from transurethral resection of prostate, the decision of using antibiotic prophylaxis in most endourological intervention is not well addressed, and our decision most of the time is driven by the personal experience of our senior staff rather than evidenced-based. The risk of urinary tract infection (UTI) following endoscopic urologic procedures is a highly controversial topic. As we have seen from all included trials, part of the controversy reflects the difficulties of even defining and classifying UTI, and in distinguishing among the varied urologic procedures.

The results of this review indicate that prophylactic antibiotics significantly reduce postoperative bacteriuria, bacteremia, symptomatic urinary tract infection, and high grade temperature in patient undergoing endourological intervention, even in low risk group, which includes patients without catheters, patients with negative urine cultures, and patients performing diagnostic cystoscopy. The reduction is clinically significant, and it was constant across most of the included studies, regardless of the weaknesses in the methodological designs, which were more appreciated in the older studies. But, we have to keep in mind that most of the trials were evaluating patients who had TURP or TURBT, rather than cystoscopy or other diagnostic transurethral surgeries where the mucosa will be violated and penetrated, which carries a high risk of infection. Studies assessing the effectiveness of antibiotic for cystoscopies were lacking, and the evidence is weak for this group.

This review provided strong evidence that any antibiotic prophylaxis, in patient going for TURP and TURBT, will reduce the postoperative bacteriuria from 17.6% to 6.8%, will reduce symptomatic UTI from 10.1% to 2.9%, and furthermore, a reduction in the postoperative bacteremia episodes from 6.1% to 2.1%. However, there are significant variations in duration, antibiotic choice, or even dose given across all included article, which definitely played a role in the moderate heterogeneity in the analysis performed. Trials assessing a standard antibiotic regimen, antibiotic safety profiles and side effects, and cost-analysis are vital.

Traditionally, cystoscopy is the most commonly performed procedure in urology practices all over the world, and it is considered a "clean" procedure that does not merit routine prophylactic antimicrobial therapy. Most reports indicate that symptomatic infections occur following fewer than 5% of procedures, provided the urine is sterile preoperatively. However, the prevalence of asymptomatic bacteriuria has been reported after as many as 35% of cystoscopy procedures in some series, with most series in the 10% range. The significances of bacteriuria at the time of the surgery are not well appreciated, but patients with positive preoperative bacteriuria have a high incidence of bacteremia and sepsis. Because of the current lack of evidence, in this procedure, clinician needs to weigh the benefits of adding antibiotics prophylaxis to prevent UTI against adverse events, costs, and development of bacterial resistance. Also, the urologist should always keep in mind that antibiotic prophylaxis is not the only means to prevent infection following surgery.

Systematic reviews are limited by the quality of the available evidence and the way it is reported. For example, the literature contains considerable debate about the concentration of bacteria in urine that is considered "significant." The traditional threshold was >100,000 colony-forming units (CFU) per mL of a single species. This definition was based on older population surveys where patients were required to have repeated samples showing >10 5 CFU/mL. More recent literature suggests that >10 2 CFU/mL represents significant bacteriuria in a patient with urinary tract symptoms, but the precise definition of significant debate. This variation in defining significant bacteriuria may underestimate or overestimate the incidence of bacteriuria, according to the cut limit used.

Future RCTs are required to assess the effectiveness of antibiotic prophylaxis in patients undergoing minor transurethral urological procedures, which represent the bulk of our everyday practice. Also, standardization of the definition of significant bacteriuria would lead to a proficient reporting. Finally, there is no doubt that antibiotic prophylaxis is required for surgeries like TURP or TURBT, but the optimal antibiotic regimens (antibiotic class, dose, and course) are still to be determined in a properly designed RCT.


   Conclusion Top


Prophylactic antibiotics, regardless to the type of antibiotic used, decrease the incidence of bacteriuria, bacteremia, symptomatic urinary tract infection, and high grade fever, especially in patients undergoing transurethral resection of prostate and transurethral resection of bladder tumor. Evidence for usage in less invasive endo-urological procedure is lacking. Therefore, further well-designed double-blinded placebo controlled studies are required for minor urological surgeries (urethroscopy, cystoscopy, and ureteroscopy).

 
   References Top

1.Reuter MA, Reuter HJ. The development of the cystoscope. J Urol 1998;159:638-40.  Back to cited text no. 1
    
2.Childs SJ. Appropriate surgical prophylaxis in transurethral genitourinary surgery and potential reduction in nosocomial infections. Urology 1986;27:415-20.  Back to cited text no. 2
    
3.Goldwasser B, Bogokowsky B, Nativ O, Sidi AA, Jonas P, Many M. Urinary infections following transurethral resection of bladder tumors: Rate and source. J Urol 1983;129:1123-4.  Back to cited text no. 3
    
4.Qiang W, Jianchen W, MacDonald R, Monga M, Wilt TJ. Antibiotic prophylaxis for transurethral prostatic resection in men with preoperative urine containing less than 100,000 bacteria per ml: A systematic review. J Urol 2005;173:1175-81.  Back to cited text no. 4
    
5.Kunin CM. Nosocomial urinary tract infections and the indwelling catheter: What is new and what is true? Chest 2001;120:10-2.  Back to cited text no. 5
    
6.Grabe M. Perioperative antibiotic prophylaxis in urology. Curr Opin Urol 2001;11:81-5.  Back to cited text no. 6
    
7.Kraklau DM, Wolf JS Jr. Review of antibiotic prophylaxis recommendations for office-based urologic procedures. Tech Urol 1999;5:123-8.  Back to cited text no. 7
    
8.Rané A, Cahill D, Saleemi A, Montgomery B, Palfrey E. The issue of prophylactic antibiotics prior to flexible cystoscopy. Eur Urol 2001;39:212-4.  Back to cited text no. 8
    
9.Puppo P, Ricciotti G, Bozzo W, Introini C. Primary endoscopic treatment of ureteric calculi. A review of 378 cases. Eur Urol 1999;36:48-52.  Back to cited text no. 9
    
10.Rao PN, Dube DA, Weightman NC, Oppenheim BA, Morris J. Prediction of septicemia following endourological manipulation for stones in the upper urinary tract. J Urol 1991;146:955-60.  Back to cited text no. 10
    
11.Hendrikx AJ, Strijbos WE, de Knijff DW, Kums JJ, Doesburg WH, Lemmens WA. Treatment for extended-mid and distal ureteral stones: SWL or ureteroscopy? Results of a multicenter study. J Endourol 1999;13:727-33.  Back to cited text no. 11
    
12.Dall′Era MA, Walsh TJ, Krieger JN. Infectious complications of urologic surgery. In: Kevin R. Loughlin, editor(s). Complications of Urologic Surgery and Practice: Diagnosis, Prevention and Management. New York: Informa; 2007. p. 1-16.  Back to cited text no. 12
    
13.Raz R, Almog D, Elhanan G, Shental J. The use of ceftriaxone in the prevention of urinary tract infection in patients undergoing transurethral resection of the prostate (TUR-P). Infection 1994;22:347-9.  Back to cited text no. 13
    
14.Morris MJ, Golovsky D, Guinness MD, Maher PO. The value of prophylactic antibiotics in transurethral prostatic resection: A controlled trial, with observations on the origin of postoperative infection. Br J Urol 1976;48:479-84.  Back to cited text no. 14
    
15.Symes JM, Hardy DC, Sutherns K, Blandy JP. Factors reducing the rate of infection after trans-urethral surgery. Br J Urol 1972;44:582-6.  Back to cited text no. 15
    
16.Berry A, Barratt A. Prophylactic antibiotic use in transurethral prostatic resection: A meta-analysis. J Urol 2002;167:571-7.  Back to cited text no. 16
    
17.Mebust WK. Prophylactic antibiotics in transurethral surgery. J Urol 1993;150:1734-5.  Back to cited text no. 17
    
18.Chodak G, Plaut ME. Systemic antibiotics for prophylaxis in urologic surgery: A critical review. J Urol 1979;121:695-9.  Back to cited text no. 18
    
19.Appell RA, Flynn JT, Paris AM, Blandy JP. Occult bacterial colonization of bladder tumors. J Urol 1980;124:345-6.  Back to cited text no. 19
    
20.Charton M, Vallencien G, Veillon B, Brisset JM. Antibiotic prophylaxis of urinary tract infection after transurethral resection of the prostate: A randomized study. J Urol 1987;138:87-9.  Back to cited text no. 20
    
21.Amin M. Antibacterial prophylaxis in Urology: A review. Am J Med 1992;92:114S-117S.  Back to cited text no. 21
    
22.Slavis SA, Miller JB, Golji H, Dunshee CJ. Comparison of single-dose antibiotic prophylaxis in uncomplicated transurethral resection of the prostate. J Urol 1992;147:1303-6.  Back to cited text no. 22
    
23.Chen RN, Kavoussi LR. Therapeutic ureteroscopy. In: Marshall FF, editor(s). Textbook of Operative Urology. Philadelphia: WB Saunders; 1996. p. 40-7.  Back to cited text no. 23
    
24.Moore RG, and Marshall FF. Endoscopic treatment of urethral strictures and urethral obliteration. In: Marshall FF, editor(s). Textbook of Operative Urology. Philadelphia: WB Saunders; 1996. p. 99-106.  Back to cited text no. 24
    
25.ElMalik EM, Ibrahim AI, Gahli AM, Saad MS, Bahar YM. Risk factors in prostatectomy bleeding: Preoperative urinary infection is the only reversible factor. Eur Urol 2000;37:199-204.  Back to cited text no. 25
    
26.Kanamaru S, Terai A, Ishitoya S, Kunishima Y, Nishiyama H, Segawa T, et al. Assessment of a protocol for prophylactic antibiotics to prevent perioperative infection in urological surgery: A preliminary study. Int J Urol 2004;11:355-63.  Back to cited text no. 26
    
27.Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.0 [updated February 2008]. The Cochrane Collaboration. 2008. Available from: www.cochrane-handbook.org.   Back to cited text no. 27
    
28.Bannister G, Arkell DG, Menday AP. Prostatectomy and prophylaxis. J Antimicrob Chemother 1981;7:209-10.  Back to cited text no. 28
    
29.Botto H, Richard F, Mathieu F, Perreau AM, Camey M. Short-term prophylaxis with cefotaxime in prostatic surgery. J Antimicrob Chemother 1984;14:231-5.  Back to cited text no. 29
    
30.Cam K, Kayikci A, Erol A. Prospective evaluation of the efficacy of antibiotic prophylaxis before cystoscopy. Indian J Urol 2009;25:203-6.  Back to cited text no. 30
[PUBMED]  Medknow Journal  
31.Charton M, Vallancien G, Veillon B, Brisset JM. Antibiotic prophylaxis of urinary tract infection after transurethral resection of the prostate: A randomized study. J Urol 1987;138:87-9.  Back to cited text no. 31
    
32.Childs SJ, Wells WG, Mirelman S. Antibiotic prophylaxis for genitourinary surgery in community hospitals. J Urol 1983;130:305-8.  Back to cited text no. 32
    
33.Conn IG, Moffat LE. Short-term cephradine prophylaxis in elective transurethral prostatectomy. J Hosp Infect 1988;11:373-5.  Back to cited text no. 33
    
34.Costa FJ. Lomefloxacin prophylaxis in visual laser ablation of the prostate. Urology 1994;44:933-6.  Back to cited text no. 34
    
35.Desai KM, Abrams PH, White LO. A double-blind comparative trial of short-term orally administered enoxacin in the prevention of urinary infection after elective transurethral prostatectomy: A clinical and pharmacokinetic study. J Urol 1988;139:1232-4.  Back to cited text no. 35
    
36.Dørflinger T, Madsen PO. Antibiotic prophylaxis in transurethral surgery. Urology 1984;24:643-6.  Back to cited text no. 36
    
37.Fair WR. Perioperative use of carbenicillin in transurethral resection of prostate. Urology. 1986;27:15-8.  Back to cited text no. 37
    
38.Falkiner FR, Ma PT, Murphy DM, Cafferkey MT, Gillespie WA. Antimicrobial agents for the prevention of urinary tract infection in transurethral surgery. J Urol 1983;129:766-8.  Back to cited text no. 38
    
39.Ferrie BG, Scott R. Prophylactic cefuroxime in transurethral resection. Urol Res 1984;12:279-81.  Back to cited text no. 39
    
40.Finkelstein LH, Arsht DB, Manfrey SJ, Childs S. Ceftriaxone in the prevention of postoperative infection in patients undergoing transurethral resection of the prostate. Am J Surg 1984;148:19-21.  Back to cited text no. 40
    
41.Gasser TC, Wisard M, Frei R. Oral fleroxacin prophylaxis in transurethral surgery. J Urol 1996;156:146-8.  Back to cited text no. 41
    
42.Gibbons RP, Stark RA, Correa RJ Jr, Cummings KB, Mason JT. The prophylactic use-or misuse-of antibiotics in transurethral prostatectomy. J Urol 1978;119:381-3.  Back to cited text no. 42
    
43.Higgins PM. Value of porphylactic antibacterial therapy in instrumentation of urinary tract. Br Med J 1966;1:26-9.  Back to cited text no. 43
    
44.Holl WH, Rous SN. Is antibiotic prophylaxis worthwhile in patients with transurethral resection of prostate? Urology 1982;19:43-6.  Back to cited text no. 44
    
45.Houle AM, Mokhless I, Sarto N, Elhilali MM. Perioperative antibiotic prophylaxis for transurethral resection of the prostate: Is it justifiable? J Urol 1989;142:317-9.  Back to cited text no. 45
    
46.Ibrahim AI, Rashid M. Comparison of local povidone-iodine antisepsis with parenteral antibacterial prophylaxis for prevention of infective complications of TURP: A prospective randomized controlled study. Eur Urol 2002;41:250-6.  Back to cited text no. 46
    
47.Johnson MI, Merrilees D, Robson WA, Lennon T, Masters J, Orr KE, et al. Oral ciprofloxacin or trimethoprim reduces bacteriuria after flexible cystoscopy. BJU Int 2007;100:826-9.  Back to cited text no. 47
    
48.Kjaergaard B, Petersen E, Lauridsen KG, Petersen AS. Prophylactic one-dose treatment with clindamycin and gentamicin in transurethral prostatic resection. A double-blind placebo controlled study. Scand J Urol Nephrol 1989;23:109-13.  Back to cited text no. 48
    
49.MacDermott JP, Ewing RE, Somerville JF, Gray BK. Cephradine Prophylaxis in Transurethral Procedures for carcinoma of the Bladder. Br J Urol 1988;62:136-9.  Back to cited text no. 49
    
50.Mendoza GB Jr, Gerwig WH Jr, Stackhouse KL, Easley GW. Prophylactic use of antibacterial drugs following cystoscopy: A Double-blind controlled study of demeclocycline hydrochloride and sulfamethoxypyridazine. J Urol 1971;106:682-4.  Back to cited text no. 50
    
51.Murdoch DA, Badenoch DF, Gatchalian ER. Oral ciproflocacin as prophylaxis in transurethral resection of the prostate. Br J Urol 1987;60:153-6.  Back to cited text no. 51
    
52.Nielsen OS, Maigaard S, Frimodt-Møller N, Madsen PO. Prophylactic antibiotics in transurethral prostatectomy. J Urol 1981;126:60-2.  Back to cited text no. 52
    
53.Prokocimer P, Quazza M, Gibert C, Lemoine JE, Joly ML, Dureuil B, et al. Short-term prophylactic antibiotics in patients undergoing prostatectomy: Report of a double-blind randomized trial with 2 intravenous doses of cefotaxime. J Urol 1986;135:60-4.  Back to cited text no. 53
    
54.Qvist N, Christiansen HM, Ehlers D. Prophylactic antibiotics in transurethral prostatectomy. Urol Res 1984;12:275-7.  Back to cited text no. 54
    
55.Rodrigues P, Hering F, Meller A, Campagnari JC, D′Império M. A randomized and prospective study on the value of antibiotic prophylaxis administration in transurethral resection of the prostate. Sao Paulo Med J 2004;122:4-7.  Back to cited text no. 55
    
56.Scholz M, Luftenegger W, Harmuth H, Wolf D, Höltl W. Single-dose antibiotic prophylaxis in transurethral resection of the prostate: A prospective randomized trial. Br J Urol 1998;81:827-9.  Back to cited text no. 56
    
57.Shah PJ, Williams G, Chaudary M. Short-term antibiotic prophylaxis and prostatectomy. Br J Urol 1981;53:339-43.  Back to cited text no. 57
    
58.Shearman CP, Silverman SH, Johnson M, Young CH, Farrar DJ, Keighley MR, et al. Single dose, oral antibiotic cover for transurethral prostatectomy. Br J Urol 1988;62:434-8.  Back to cited text no. 58
    
59.Slavis SA, Miller JB, Golji H, Dunshee CJ. Comparison of single-dose antibiotic prophylaxis in uncomplicated transurethral resection of the prostate. J Urol 1992;147:1303-6.  Back to cited text no. 59
    
60.Stricker PD, Grant AB. Relative value of antibiotics and catheter care in the prevention of urinary tract infection after transurethral prostatic resection. Br J Urol 1988;61:494-7.  Back to cited text no. 60
    
61.Taylor EW, Lindsay G. Antibiotic prophylaxis in transurethral resection of the prostate with reference to the influence of preoperative catheterization. J Hosp Infect 1988;12:75-83.  Back to cited text no. 61
    
62.Viitanen J, Talja M, Jussila E, Nurmi M, Permi J, Puolakka VM, et al. Randomized controlled study of chemoprophylaxis in transurethral prostatectomy. J Urol 1993;150:1715-7.  Back to cited text no. 62
    
63.Wagenlehner FM, Wagenlehner C, Schinzel S, Naber KG; Working Group "Urological Infections" of German Society of Urology. Prospective, randomized, multicentric, open, comparative study on the efficacy of a prophylactic single dose of 500 mg levofloxacin versus 1920 mg trimethoprim/sulfamethoxazole versus a control group in patients undergoing TUR of the prostate. Eur Urol 2005;47:549-56.  Back to cited text no. 63
    
64.Weiss J, Wein A, Jacobs J, Hanno P. Use of nitrofurantoin macrocrystals after transurethral prostatectomy. J Urol 1983;130:479-80.  Back to cited text no. 64
    
65.Williams M, Hole DJ, Murdoch RW, Ogden AC, Hargreave TB. 48-hour cephradine and post-prostatectomy bacteriuria. Br J Urol 1980;52:311-5.  Back to cited text no. 65
    
66.Wilson L, Ryan J, Thelning C, Masters J, Tuckey J. Is antibiotic prophylaxis required for flexible cystoscopy? A truncated randomized double-blind controlled trial. J Endourol 2005;19:1006-8.  Back to cited text no. 66
    
67.Yokoyama M, Fujii Y, Yoshida S, et al. Discarding antimicrobial prophylaxis for transurethral resection of bladder tumor: A feasibility study. Int J Urol 2009;16:61-3.  Back to cited text no. 67
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8]
 
 
    Tables

  [Table 1]


This article has been cited by
1 Efficacy of routine screening of urine culture before transurethral prostatectomy on the improvement of the postoperative outcome: A single-centre experience
Kwun-Chung Cheng,Lee-Fung Lee,Hoi-Chak Chan,Chak-Lam Cho,Hin Chau,Kin-Man Lam,Hing-Sing So
Surgical Practice. 2014; 18(4): 174
[Pubmed] | [DOI]
2 The Risk of Urinary Tract Infection after Flexible Cystoscopy in Patients with Bladder Tumor Who Did Not Receive Prophylactic Antibiotics
Harry W. Herr
The Journal of Urology. 2014;
[Pubmed] | [DOI]
3 Antimicrobial Prophylaxis in Transurethral Enucleation and Resection of the Prostate: A Comparison of 1-Day Treatment and More than 2-Day Treatment
Min Seok Kim,Won Jin Cho,Seung Baik,Dong Hoon Lim,Joon Nho,Chul Sung Kim
The Korean Journal of Urogenital Tract Infection and Inflammation. 2014; 9(2): 104
[Pubmed] | [DOI]
4 Low incidence of bacteriuria with outpatient flexible cystoscopy
Tsia-Shu Lo,Siwatchaya Khanuengkitkong,Yiap Loong Tan,Anil Krishna Dass,Pei-Ying Wu,Ahlam Mahmoud Al-Kharabsheh
Australian and New Zealand Journal of Obstetrics and Gynaecology. 2014; : n/a
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Objectives
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed7568    
    Printed150    
    Emailed0    
    PDF Downloaded1311    
    Comments [Add]    
    Cited by others 4    

Recommend this journal