Urology Annals
About UA | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionLogin 
Urology Annals
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 588   Home Print this page  Email this page Small font size Default font size Increase font size
Year : 2017  |  Volume : 9  |  Issue : 1  |  Page : 55-60

Predictors of radiation exposure to providers during percutaneous nephrolithotomy

1 Department of Urology, University of California San Diego, San Diego, CA, USA
2 University of California San Diego School of Medicine, San Diego, CA, USA
3 Bowdoin College, Brunswick, ME, USA
4 Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
5 Department of Urology, University of California San Diego; University of California San Diego School of Medicine; Department of Urology, San Diego VA Medical Center, San Diego, CA, USA

Correspondence Address:
Joel E Abbott
Department of Urology, University of California, 200 West Arbor Drive #8897, San Diego, CA 92103
Login to access the Email id

DOI: 10.4103/0974-7796.198903

PMID: 28216931

Rights and Permissions

Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded81    
    Comments [Add]    

Recommend this journal