Urology Annals
About UA | Search | Ahead of print | Current Issue | Archives | Instructions | Online submissionLogin 
Urology Annals
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 210   Home Print this page  Email this page Small font size Default font size Increase font size
Year : 2016  |  Volume : 8  |  Issue : 2  |  Page : 197-202

Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

1 Deparment of Urology, Al-Azar University, Cairo, Egypt
2 Deparment of Urology, Al-Azar University, Dmietta, Egypt
3 Deparment of Urology, Al-Azhar university, Assiut, Egypt
4 Deparment of Anesthesia, Zagazig University, Zagazig, Egypt
5 Deparment of Radiology, Al-Azar University, Cairo, Egypt
6 Deparment of Urology, El Fayoum University, Al Fayoum, Egypt

Correspondence Address:
Yasser ALI Badran
Department of Urology, Faculty of Medicine, Al-Azhar University, Cairo
Login to access the Email id

DOI: 10.4103/0974-7796.164842

PMID: 27141192

Rights and Permissions

Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded302    
    Comments [Add]    

Recommend this journal